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Abstract

Adapting a pretrained diffusion model to new objectives at inference time remains
an open problem in generative modeling. Existing steering methods suffer from
inaccurate value estimation, especially at high noise levels, which biases guidance.
Moreover, information from past runs is not reused to improve sample quality,
resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree
Search, we address these limitations by casting inference-time alignment as a search
problem that reuses past computations. We introduce a tree-based approach that
samples from the reward-aligned target density by propagating terminal rewards
back through the diffusion chain and iteratively refining value estimates with each
additional generation. Our proposed method, Diffusion Tree Sampling (DTS),
produces asymptotically exact samples from the target distribution in the limit of
infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS⋆), performs a
global search for high reward samples. On MNIST and CIFAR-10 class-conditional
generation, DTS matches the FID of the best-performing baseline with up to
10× less compute. In text-to-image generation and language completion tasks,
DTS⋆ effectively searches for high reward samples that match best-of-N with up
to 5× less compute. By reusing information from previous generations, we get
an anytime algorithm that turns additional compute into steadily better samples,
providing a scalable approach for inference-time alignment of diffusion models1.

1 Introduction

Diffusion models have emerged as one of the most powerful frameworks for generative modeling,
achieving state-of-the-art results across a wide range of modalities, including image synthesis
[27; 65; 56], molecule conformer generation [28; 78], and text generation [59; 42]. Despite their
success, adapting a pretrained diffusion model to satisfy new, user-defined objectives at inference
time without expensive retraining or fine-tuning remains a major challenge [69].

Most objectives can be cast as a reward function, turning alignment into a posterior sampling problem
where the target is to sample from the pretrained model density weighted by exponentiated reward.
The key challenge is that rewards are only available at the end of the denoising trajectory. So,
inference-time alignment seeks to guide the denoising process based on unseen terminal rewards.

A range of different methods have been proposed – gradient-based guidance [15; 10; 3], where one
uses reward gradients to bias the denoising process; sequential Monte Carlo (SMC) [74; 67; 7; 17; 34]
which maintains a population of particles and resamples them during denoising based on an estimate
of terminal rewards; or more recently, search-based methods [40; 41; 44] that perform a local greedy
search based on approximate rewards. The common issue undermining all of these methods is that
they rely on certain approximations to estimate the unseen terminal rewards. As we demonstrate in
Section 3, these approximations bias decisions and degrade sample quality.

Preprint. Under review.
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Figure 1: Sample text-image pairs using Stable Diffusion v1.5 [56] and ImageReward [77] as the
guiding function, with generated samples picked at random for each method and prompt.

We therefore address the following challenges or questions in this work: (1) how to guide the diffusion
process at inference-time when rewards are available only at the end? This is also known as the
credit assignment problem in reinforcement learning (RL) literature [45]; (2) inference-time samples
can potentially inform and improve future samples – how to systematically use this information in a
sequential yet scalable sampling process?

Figure 2: Scaling inference compute.

Fortunately, RL also provides a solution that has been
historically quite successful in addressing both chal-
lenges – Monte Carlo Tree Search (MCTS) [6]. We
therefore ask: can we leverage MCTS for steering
diffusion models? We observe that during denoising,
the pretrained diffusion model can be viewed as a
deterministic policy, while the reverse process Gaus-
sian step can be viewed as a stochastic environment
transition. This is exactly the classical setting for
MCTS [36], suggesting we could use tree search to
solve the problem of inference-time alignment.

Our proposed algorithm, Diffusion Tree Sampling
(DTS) is a novel inference-time alignment method
that casts the denoising process as a finite-horizon
tree, where similar to MCTS, rollouts are used to
continuously improve value estimates for intermediate noisy states. For applications that require
optimization, rather than sampling from the target density, we propose a search variant – Diffusion
Tree Search (DTS⋆) – that performs a principled search in the space of denoising trajectories to
identify the modes within high-volume regions of the target density.

Our contributions can be summarized as follows:

• We formulate inference-time alignment of diffusion models as a tree search problem for sampling
from the reward-aligned distribution or optimizing for high reward samples.

• We develop a general tree-based algorithm that yields asymptotically exact samples from the
target distribution in the limit of infinite rollouts.

• We demonstrate that DTS significantly reduces bias and variance in value estimation compared
to common approximations used by many existing methods.

• We show that both DTS and DTS⋆ scale more favorably compared to leading baselines and
match their performance with up to 10× less compute on class-conditional image generation,
and up to 5× less compute on text-to-image alignment and language completion tasks.
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The paper is organized as follows. Section 2 reviews diffusion models and the formalism of inference-
time alignment. Section 3 discusses relevant literature and investigates the issues with existing
approaches. Section 4 presents the DTS and DTS⋆ algorithms, along with theoretical guarantees of
consistency. Section 5 provides empirical results in various high-dimensional settings. We conclude
in Section 6 with a discussion of limitations, computational considerations, and future directions.

2 Preliminaries
Diffusion models. Diffusion models [27; 65] define a generative process via a Markov chain that
progressively adds noise to data x0 ∼ pdata(x), referred to as the forward process,

xt =
√
αt xt−1 +

√
1− αt ϵ, ϵ ∼ N (0, I),

where t ∈ {1, . . . , T} indexes discrete time steps, and {αt}Tt=1 defines a noise schedule. The noise
schedule is chosen such that at t = T , the marginal distribution of the samples resembles a simple
fixed distribution, such as standard Gaussian, p(xT ) = N (0, I). A learned reverse process iteratively
denoises samples:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), σ
2
t I),

where σt is the posterior variance calculated from the forward noise schedule and µθ is parameterized
typically by neural networks and optimized by minimizing the variational bound on the data likelihood
or via denoising score matching. The generative process induces a distribution:

pθ(x0, . . . ,xT−1,xT ) = p(xT )

T∏
t=1

pθ(xt−1 | xt), p(xT ) = N (0, I). (1)

Alignment of diffusion models. Consider a pretrained diffusion model pθ and an optimality
variable O ∈ {0, 1} which denotes whether a sample x ∼ pθ(x) satisfies some desirable property.
This setting naturally emerges in domains such as molecular design, where we might want samples
to have specific chemical properties, or text-to-image generation, where samples should match text
prompts [56]. This is equivalent to sampling from the posterior distribution

p(x | O = 1) ∝ pθ(x) p(O = 1 | x).
A typical assumption is that p(O = 1 | x) ∝ exp(λr(x)) where r is some reward function and λ is
the inverse temperature. For the rest of this paper, we assume that λ = 1 unless otherwise stated and
we define the alignment problem as sampling from the target distribution or finding its mode, where
Z is the normalization constant:

π∗(x) =
1

Z
pθ(x) exp(λr(x)). (2)

Reinforcement learning approach. Since the generative process in diffusion models defines a
Markov chain, we may consider the model pθ as a policy. The target distribution π∗ can be seen as
the optimal policy for the following objective:

π∗(x) := argmax
π

Ex∼π(·) [r(x)]−
1

λ
DKL (π ∥ pθ) . (3)

This is closely related to the maximum entropy RL objective [82; 20], except that the entropy
regularization (which equals the KL divergence with respect to a uniform policy) is replaced by the
KL divergence with the pretrained model pθ. We define the soft value function at timestep t as the
expected exponentiated reward starting from xt and following pθ:

Vt(xt) :=
1

λ
logEpθ(x0:t−1|xt) [exp (λr(x0))] . (4)

This soft value function satisfies the following recursive relation, analogous to the soft Bellman
equation and exactly characterizes the optimal policy π∗:

Vt(xt) =
1

λ
logEpθ(xt−1|xt) [exp (λVt−1(xt−1))] , V0(x0) = r(x0). (5)

π∗
t (xt−1 | xt) =

pθ(xt−1 | xt) exp (λVt−1(xt−1))∫
pθ(xt−1 | xt) exp (λVt−1(xt−1)) dxt−1

. (6)

This formulation explicitly connects optimal sampling with soft value estimation, motivating various
practical approximations and sampling methods discussed in subsequent sections. For completeness,
we derive Equations (5) and (6) in Appendix D.1. In the rest of the paper, we use Vt to denote the
true soft value function and v̂t to denote estimates.
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3 Inference-time adaptation of diffusion models
One option to obtain the optimal policy in Equation (6) is to train the diffusion model using RL,
which is called fine-tuning [19; 5; 71; 16]. This idea is not compatible with a priori unknown reward
functions presented at inference-time. Sampling from unseen reward functions would require guiding
the denoising process during inference to align with the optimal policy without modifying the prior
pretrained model. There is a growing body of work in this direction, we discuss some of the most
relevant works below, and works in related areas in Appendix A.

Gradient-based guidance. One way to sample from the optimal policy π∗ is to use the first-order
Taylor expansion of Vt−1 around the pretrained mean µθ(xt, t). This yields the gradient-based
denoising step x̃t−1∼N

(
µθ(xt, t) + λσ2

t ∇xt−1Vt−1(xt−1), σ
2
t I
)
. This can be considered a form

of classifier guidance [15] and is used in many proposed inference-time steering methods [10; 3; 24].
The gradient approximation can be improved by using Monte Carlo samples for estimation [64].

Sequential Monte Carlo. Particle-based methods are another very popular approach, where a
population of samples is maintained to approximately sample from the desired distribution. Sequential
Monte Carlo (SMC) [13] uses potential functions, which usually approximate the soft value function,
to assign weights to particles and resample them at every step. Different variations of SMC have
been proposed for diffusion model alignment [74; 67; 7; 17; 34]. Classical SMC guarantees exact
sampling in the limit of infinite particles and exact value estimation. In practice, however, the repeated
sampling procedure can reduce diversity due to weight variance and inaccurate value estimates. We
provide detailed background on SMC for diffusion sampling in Appendix B.

Search-based methods. Recently, there has been a growing interest in using search-based methods
to align diffusion models [44]. Most of these methods propose doing a local search [40; 41] by
obtaining multiple denoising candidates at each step and selecting the best one based on their value.
More recently, tree search has been combined with best-of-N [81], and an MCTS-based approach
[80] has been applied in the specific context of diffusion forcing [8] over sequences for planning.
However, these methods either do not use an explicit backup mechanism, resulting in a limited local
search[40; 41; 81; 44], or they rely on inaccurate value estimates [80]. DTS , on the other hand,
performs global credit assignment using all trajectories for asymptotically exact sampling.

3.1 The value estimation problem

Accurate credit assignment requires estimating the value function from Equation (5) at each inter-
mediate state. If the reward function is known a priori, we could use temporal difference learning
to train value networks. Most existing inference-time alignment methods employing gradient guid-
ance [10; 64], SMC [74; 34], or search [40; 41; 80] rely on the following set of approximations to
circumvent this problem. The first step is to apply Jensen’s inequality:

Vt(xt) =
1

λ
logEpθ(x0:t−1|xt) [exp (λ r(x0))] ≈ Epθ(x0:t−1|xt) [r(x0)] (7)

Estimation of this expectation is computationally expensive since it requires multiple rollouts from
the current sample at timestep t to the clean sample. The expected reward is further approximated as
Epθ(x0:t−1|xt) [r(x0)] ≈ r(x̂0(xt)), where x̂0 is the posterior mean obtained using Tweedie’s formula
[18; 10] in a single step:

x̂0(xt) = Epθ(x0:t−1|xt) [x0] =
1
√
αt

(xt + (1− ᾱt)∇xt
log pt(xt)) . (8)

Figure 3: One-step prediction x̂0(xt) using Tweedie’s formula for different time steps, along with
average mean squared error with the ground truth data samples. Close to t = 0, the predictions are
fairly accurate, but towards the maximum timestep T = 99, they devolve into random predictions.
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The posterior mean is an approximation because the true score function for intermediate marginal
densities∇xt

log pt(xt) is replaced by the learned score function. We investigate the effect of this
approximation for a diffusion model trained on a mixture of Gaussians in Figure 3. The prediction
based on Tweedie’s formula is quite accurate for low time steps, but gets increasingly inaccurate as
we go towards noisy states, eventually degrading into random predictions. Therefore, despite the
wide adoption of this approximation, the value estimates used for guidance are essentially random at
higher-noise levels even in simple 2D settings.

3.2 Scaling axes

Efficient utilization of available compute is critical for any inference-time alignment algorithm.
Existing SMC or search-based methods treat each sampling procedure as an independent event, and
all intermediate evaluations are discarded. Consider a streaming or repeated sampling setting. There
is no mechanism to assimilate information from prior runs to improve sample quality. This could be
particularly useful for correcting errors in value estimation, which, as we saw above, are difficult to
estimate at high noise levels. As a result, these methods scale along a single axis – particle count –
and cannot turn extra compute into cumulative improvements in estimate quality.

4 Diffusion Tree Sampling and Search
The pitfalls above suggest two complementary desiderata for an effective inference–time sampler:

(D1) Use information from low-noise timesteps, where the reward signal is reliable, to refine
decisions made at high-noise timesteps, rather than treating every step in isolation.

(D2) Reuse information from previously explored trajectories so that additional compute improves
sample quality instead of merely increasing parallel particle count (this property is characteris-
tic of an anytime algorithm).

To address these issues, in this section we develop a solution by first interpreting the denoising
process as a tree in Section 4.1. We then introduce a general tree-based algorithm to sample from the
target density in Section 4.2 and describe its application to diffusion model alignment in Section 4.3.
Finally, in Section 4.4 we empirically evaluate our method on 2D datasets to validate, in a very clear
and controlled setting, whether DTS satisfies the desiderata mentioned above.

4.1 Denoising tree

The Markov property of the reverse diffusion chain naturally induces a finite horizon tree in Rd,
where d is the dimensionality of the space over which we are diffusing. Here, the nodes at depth t
represent noisy states xt and the edges represent a denoising step. Each node xt can be stochastically
denoised into multiple children xt−1 ∼ pθ(· | xt).

This framing allows us to keep track of information across multiple denoising trajectories, including
estimates of the soft value function, which helps with global credit assignment.

Using the tree structure gives us the flexibility to sample from the target density or search for the
highest reward sample with minimal changes to the underlying algorithm. We call the sampling
variant Diffusion Tree Sampling (DTS) and the search variant Diffusion Tree Search (DTS⋆).

4.2 Tree-based sampling

Similar to MCTS, we construct a tree T , where nodes represent states xt and edges represent
transitions pθ(xt−1 | xt) following the base diffusion model. Each node maintains the current state
and timestep (xt, t), an estimate of the soft value function v̂(xt), and the visit count N(xt). Since
we do not have a fixed starting state, we introduce a dummy state as the root xT+1 that transitions
to the prior in our diffusion model – i.e., p(xT | xT+1) = N (0, I). Additionally, we use C(xt) to
denote the set of children of node xt.

The goal is to expand this tree while improving value estimates as we expand it, so that it can be
used for approximate sampling from the target distribution at any time during the construction. The
resulting tree sampling process provably samples from the target distribution π∗ in the limit of infinite
rollouts. The tree-building procedure of DTS repeats the following steps iteratively:

1. Selection. Starting from the root x0, sample a child xt−1 ∈ C(xt) from Boltzmann distribution
of the values ∝ exp (λ v̂(xt−1)) recursively until either an unexpanded node is reached or t = 0.
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Figure 4: Illustration of various inference-time steering methods, where size of the node represents
the associated values. Left: Best-of-N denoises multiple samples using the base diffusion model
and selects the one with the highest reward. Center: SMC maintains a population of particles and
resamples based on an estimate of the value function. Right: DTS and DTS⋆ maintain a tree that
accumulates information across multiple rollouts and backs up the terminal reward to refine value
estimates. The diagram illustrates the four phases: selection, expansion, rollout, and backup.

2. Expansion. If we reach a node xt such that the number of children is less than the maximum
allowed value and t > 0, we create a new child node xt−1 ∼ pθ(· | xt) and initialize v̂(xt−1) =
0, N(xt−1) = 1.

3. Rollout. From the newly created node, we perform a rollout till terminal states x0 by recursively
sampling from pθ(· | xt′) for t′ = t− 1, . . . , 0. An important distinction from traditional MCTS
is that we add the rollout path to T .

4. Backup. Evaluate the terminal node using the reward function v̂(x0) = r(x0) and use soft
Bellman equation (Equation (5)) to update parent node values using the children node values
recursively for t = 0, . . . , T . The visit counts for all nodes in the path are also updated.

Each traversal of the tree, from the root to the backup of the value function, constitutes one tree-
building iteration. For sampling from T , we simply start from the root and perform selection steps
until we reach a terminal node. A formal algorithm is provided in Appendix E.

Proposition 1 (Asymptotic consistency). Let r be bounded and λ > 0, then DTS produces a
sequence of terminal states whose empirical distribution converges to the optimal policy π∗ as the
number of tree iterations M →∞.

Proof sketch. By construction, the tree policy selects xt+1 with unnormalized probability pθ(xt+1 |
xt) exp(λv̂(xt+1)), which is the optimal policy defined in Equation (6). By telescoping the product
over t, we obtain the final samples at t = T are sampled from pθ(x) exp(r(x0)). A more detailed
proof is given in Appendix D.

4.3 Design choices for diffusion alignment

The algorithm discussed above can be applied to any Markov chain. However, in this work, we apply
it to the problem of inference-time alignment of diffusion models. We discuss various considerations
and design choices below, with more implementation details in Appendix F.

Sampling or Search. DTS is designed to sample from the target distribution π∗, but for settings
where a single high-quality sample is required, we introduce a search variant, DTS⋆ . It keeps the
same soft value backup but modifies the selection step by always selecting the child with the largest
soft value estimate instead of Boltzmann sampling. Since DTS⋆ uses soft values, this is different
from standard MCTS – it implements a marginal-MAP (max–sum) inference scheme [55] over the
tree. At every noise step, the algorithm selects the branch whose subtree carries the greatest mass
under π⋆ and, once t = 0 is reached, returns the highest-density leaf inside that dominant region. As
we will see in the Section 5, this volume-based selection helps avoid reward over-optimization.
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Branching. Extensions of MCTS to continuous spaces commonly use progressive widening [12]
to decide the maximum number of branches B(xt) allowed per node based on the number of visits:
B(xt) = C · N(xt)

α, C > 0, α ∈ (0, 1). The high-level intuition is that nodes that are visited more
often should be expanded more, since they represent more promising directions for denoising. We
adopt the same strategy and during tree traversal, if we encounter a node such that |C(xt)| < B(xt)
and t > 0, we will always expand.

Exploration. There is a rich literature on search methods for classical MCTS, and the most popular
approach, UCT [36], is an application of upper-confidence bounds [2] to trees. We employ this
exploration strategy for DTS⋆ , i.e. we choose the child xt−1 ∈ C(xt) with the maximum value of
the UCT estimate:

UCT(xt−1) = v̂(xt−1) + cuct

√
logN(xt)

N(xt−1)
, cuct > 0. (9)

For DTS, we do not employ explicit exploration, because, in practice we observe that sampling
obviates the need for an exploration bonus or handcrafted mechanism.

Efficient implementation. The main computational cost is incurred when using the diffusion model
proposal to sample new children or perform rollouts. We implement an efficient batched version
of the algorithm by collecting nodes by timestep and performing one forward pass for all nodes at
the same timestep. The selection and backup steps involve simple tensor operations and pointer
manipulation with negligible cost. Therefore, while the control flow of our method is sequential,
the practical algorithm can be parallelized. Note that once the tree has been built, sampling is near
instantaneous by repeatedly selecting children without any model calls.

4.4 Illustrative experiments

In this section, we perform experiments on simple 2D settings to answer the following questions:

• Does DTS sample accurately from the target distribution?
• Does reward backup in DTS result in more accurate value estimates (desideratum D1)?
• Does sample quality of DTS improve with more inference-time compute (desideratum D2)?

Setting. Consider a pretrained diffusion model as the prior p(x0) and an associated reward function
r(x0) defined on the support of p. The goal is to draw samples ∝ p(x0) exp(r(x0)). We consider
two settings: (a) the prior is a mixture of eight Gaussians with uniform weights, while the reward
function distributes mass unevenly to the different modes, and (b) the prior has alternate regions of
support in a checkerboard pattern, and the reward function is the negative distance from the origin,
r(x, y) = −0.5(x2 + y2). More details on the experimental setup are provided in Appendix F.2.

Baselines. We compare DTS with several inference-time steering methods including some which
were originally proposed for posterior sampling in inverse problems, and adapt them to the
reward-guidance setting: (1) DPS-RG (our reward-guided version of DPS [10]) = gradient-based
guidance only, (2) SMC [62], (3) TDS-RG (reward-guided version of TDS [74]) = SMC + gradient
guidance, (4) DAS [34] = SMC + gradient guidance + tempering. We also implement a version of
SMC, which we call SMC-Rollout, where the values are estimated via one full DDIM [63] rollout.

Figure 5: Samples from the prior p(x0), target p(x0) exp(r(x0)) /Z and different sampling methods
at 106 NFEs. Top: The prior is an equal-weighted mixture of Gaussians, and the reward function dis-
tributes mass unevenly. Bottom: The prior has support on alternate square regions in a checkerboard
pattern, and the reward function r(x, y) = −0.5(x2 + y2) is negative distance from the origin.
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Figure 6: Left: Maximum mean discrepancy (MMD) between generated samples and target ground
truth samples as a function of number of function evaluations of the prior diffusion model. Right:
Bias and variance of value estimates for different approaches at 106 NFEs.

For fair comparison, we benchmark all methods with respect to number of function evaluations
(NFEs) of the diffusion model.

Results. Figure 5 plots the samples obtained using different methods for two different settings. In
both cases, DTS approximates the ground truth target density more accurately, with other methods
distributing mass inaccurately to different areas of the support. In particular, gradient-based methods
like DPS-RG and TDS-RG suffer from instability and require gradient clipping to stabilize denoising
steps. Figure 6 shows the Maximum mean discrepancy (MMD) between generated samples and
ground truth samples for an increasing amount of inference budget, measured in terms of the number
of function evaluations of the diffusion model. This empirically validates that the sample quality of
DTS improves with more compute, satisfying desideratum D2.

Bias-variance analysis of value estimates. We estimate ground truth soft value estimates at
different timesteps by performing 1000 rollouts from noisy states using the base model and then
taking log-sum-exp of the rewards. We then compute the relative mean squared error with the value
estimates obtained using different approximations and decompose it into bias and variance. Figure 6
shows this for different diffusion timesteps using DTS , Tweedie’s formula (SMC + variants), and a
single full DDIM rollout (SMC-Rollout). Both one-step denoising and single rollout have high bias
and variance, which generally get worse for higher timesteps. Our tree-based approach reduces bias
by using accurate reward information and reduces variance by aggregating information from multiple
rollouts. This empirically validates that DTS satisfies desideratum D1.

5 Experiments

We validate the efficacy of DTS and DTS⋆ for image and text generation. Our experiments show
that DTS draws faithful samples from high-dimensional posteriors, and DTS⋆ efficiently searches
high-dimensional image space to discover high-reward samples. We provide detailed description of
each experimental setting in Appendix F.2, details of baseline implementations in Appendix G, and
additional results in Appendix H.

5.1 Class-conditional posterior sampling

We evaluate DTS on the task of sampling from a class-conditioned posterior distribution p(x | c) ∝
pθ(x)p(c | x) where pθ(x) is a pretrained unconditional diffusion model and p(c | x) is a classifier.
This would correspond to setting r(x) = log p(c | x) in Equation (2).

Setting. We use MNIST and CIFAR-10 datasets, each with 10 classes. In both cases, the priors
are unconditional diffusion models in pixel-space – we train one from scratch on MNIST and use an
off-the-shelf model2 for CIFAR-10. For MNIST, we consider two settings: sampling from individual
digits, and sampling from even/odd digits. The latter is a multimodal posterior with reward function
r(x) = max{i=0,2,4,6,8} log p(c = i | x) for the even digits and similarly for odd digits. For
CIFAR-10, we sample from individual classes.

Baselines. We compare the performance of DTS with DPS [10], SMC/FK [62], TDS [74] and DAS
[34]. DPS, TDS, and DAS use reward gradients, while SMC/FK is derivative-free. We report two

2https://huggingface.co/google/ddpm-cifar10-32
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Table 1: Comparison of inference-time posterior sampling methods. We report the mean±std of each
metric across the relevant classes and highlight ±5% values from the best experimental value.
Dataset → MNIST MNIST even/odd CIFAR-10

Algorithm ↓ FID (↓) CMMD (↓) E[log r(x)] (↑) Diversity (↑) FID (↓) CMMD (↓) E[log r(x)] (↑) Diversity (↑) FID (↓) CMMD (↓) E[log r(x)] (↑) Diversity (↑)

DPS 0.359 ± 0.227 0.441 ± 0.447 -0.323 ± 0.286 0.474 ± 0.051 0.123 ± 0.031 0.293 ± 0.139 -0.002 ± 0.001 0.572 ± 0.053 0.486 ± 0.121 2.609 ± 0.824 -0.002 ± 0.001 0.551 ± 0.024

SMC/FK 0.060 ± 0.051 0.177 ± 0.142 -0.002 ± 0.004 0.422 ± 0.040 0.027 ± 0.009 0.123 ± 0.113 -0.003 ± 0.003 0.583 ± 0.084 0.313 ± 0.070 1.409 ± 0.445 -0.102 ± 0.093 0.487 ± 0.045

TDS 0.087 ± 0.035 0.463 ± 0.260 -0.001 ± 0.001 0.404 ± 0.042 0.053 ± 0.010 0.250 ± 0.056 -0.001 ± 0.000 0.576 ± 0.124 0.487 ± 0.112 2.675 ± 0.665 -0.046 ± 0.055 0.469 ± 0.042

DAS 0.039 ± 0.017 0.179 ± 0.099 -0.016 ± 0.016 0.440 ± 0.041 0.031 ± 0.002 0.079 ± 0.011 -0.015 ± 0.019 0.603 ± 0.094 0.241 ± 0.037 0.822 ± 0.203 -0.584 ± 0.200 0.530 ± 0.023

DTS (ours) 0.014 ± 0.005 0.068 ± 0.030 -0.023 ± 0.006 0.452 ± 0.050 0.007 ± 0.003 0.036 ± 0.029 -0.010 ± 0.004 0.597 ± 0.069 0.195 ± 0.041 0.745 ± 0.201 -0.305 ± 0.116 0.542 ± 0.020

Figure 7: FID (lower is better) versus number of function evaluations for different methods on MNIST
single digit generation averaged over all 10 digits (left), MNIST odd and even digit generation (center),
and CIFAR-10 single class generation averaged over all 10 classes (right). All methods were evaluated
with 5000 generated samples per class.

distribution-based metrics – Fréchet Inception Distance (FID) and CLIP maximum mean discrepancy
(CMMD) [32] – that compare generated samples with ground truth samples from the dataset, in
addition to average rewards and CLIP diversity (pairwise cosine distance).

Results. Table 1 reports the mean±std of various metrics for different methods after 106 NFEs. In
all three settings, DTS achieves the lowest FID and CMMD by a considerable margin, indicating it
closely matches the true posterior. We observe that the margin of improvement on CIFAR-10 narrows
slightly. We attribute this to reward noise: the CIFAR-10 classifier achieves an accuracy of ∼85%, so
its logits provide a noisier signal than the near-perfect classifier used on MNIST. Even so, DTS still
outperforms all baselines. TDS and SMC in particular show characteristics of mode collapse with
very high average rewards and low diversity, whereas DPS often generates samples that lie outside
the support of the base model. Figure 7 shows that DTS achieves very low FID across different NFEs
and has better scaling properties with more compute compared to existing methods.Figure 8 presents
example outputs from each method, highlighting their specific characteristics. We present samples
for all classes and plots of additional metrics as a function of NFEs in Appendix H.1.

Figure 8: Samples generated from the CIFAR-10 (top) and MNIST (bottom) base diffusion models,
and posterior samples using different methods at 106 NFEs. Gradient-based guidance such as DPS can
be unstable, leading to samples that lie outside the support of the prior. SMC-based methods struggle
to accurately sample from multi-modal distributions – for MNIST even digits, TDS oversamples
from the digit two and undersamples from the digit four, and for CIFAR-10 car, both SMC and TDS
suffer from mode collapse.
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Figure 9: Left: Maximum ImageReward [77] vs. compute (NFEs) per prompt, averaged over 200
prompts from DrawBench [58], and maximum aesthetic score [60] vs. compute (NFEs) per prompt,
averaged over 45 common animal prompts. Right: Samples generated using SD-v1.5 [56] for simple
animal prompts and aesthetic score as the reward at 100k NFEs. For each prompt, DTS⋆ faithfully
matches the prompt while achieving high reward, whereas SMC samples score higher but visibly
over-optimize. Numbers in the corner show aesthetic scores.

5.2 Text-to-image generation

Large-scale diffusion models for text-conditioned image generation [56] can generate high-quality
images and effectively generalize to new prompts. However, they struggle with complex captions,
such as those that involve multiple components ("an emoji of a baby panda wearing a red hat, blue
gloves, green shirt, blue pants") or unseen settings ("a panda making latte art"). A common approach
to improve the quality of such complex prompts is to use human preferences [77] for fine-tuning
the model or for inference-time alignment. The goal in this setting is to generate images with high
reward while staying within the support of the base model.

Setting. We use Stable Diffusion v1.5 [56], a latent diffusion model, as the prior over 512× 512
images x ∼ pθ(x | y) where y denotes the text prompt. We evaluate on two different settings:
(a) DrawBench [58], which is comprehensive benchmark of 200 prompts, with ImageReward [77]
r(x,y) that encodes prompt accuracy as well as human preferences; and (b) following Black et al. [5],
we use 45 common animals from the ImageNet-1000 dataset as prompts, with the LAION aesthetics
predictor [60] r(x) that encodes aesthetic quality of an image but does not check for prompt accuracy.

Baselines. A strong baseline for high-reward generation is best-of-N , which draws N samples from
the base model and keeps the one with the highest reward. SMC has also been applied to this problem
[62], but (a) as discussed in Section 3.1, it relies on one-step value estimates that become inaccurate
at high noise, and (b) Section 5.1 shows that it often collapses onto narrow modes. We compare
DTS⋆ with best-of-N and FK-Steering (SMC) [62]. For fair comparison, we set the number of
candidates for best-of-N or the number of particles for FK-Steering based on the number of function
evaluations of the base diffusion model, and record the highest reward for each method per prompt.

Results. Figure 9 plots the maximum ImageReward and aesthetic score versus inference compute.
DTS⋆ outperforms the baselines for DrawBench prompts, see Figure 1 for examples. One strong
feature of DTS⋆ is its favorable scaling properties with more compute. In the aesthetic score setting,
FK/SMC achieves the highest rewards across NFEs, but we see severe over-optimization on all
prompts. DTS⋆ manages to strike the right balance between achieving high rewards while still
maintaining faithfulness to the prior model. We hypothesize that since DTS⋆ backs up soft values,
each node aggregates posterior mass rather than peak density. Consequently, a reward spike that lies
in a vanishing-probability region of the prior contributes negligibly to the value estimates, resulting
in an implicit KL-regularization effect (cf. Section 2).

5.3 Text generation

Setting. We evaluate DTS⋆ on text generation using MDLM [59], a discrete diffusion language
model. We generate three text completions of length 64 for each of 15 prompts introduced by Han et al.
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Figure 10: Left: Maximum reward and distinct trigrams vs. compute (NFEs) per prompt, across 15
simple prompts with MDLM [59] using a classifier trained on CoLA [48] as the reward. DTS⋆ obtains
the highest reward while maintaining diverse outputs. Right: Typical samples generated by the base
model, FK/SMC, and DTS⋆ for the prompt “The city” at 218 NFEs.

[21]. The reward is defined as the log probability that the text is classified grammatically ‘acceptable’
by a BERT-based classifier [48] trained on the Corpus of Linguistic Acceptability (CoLA) [73]. We
also report diversity by computing the number of distinct trigrams in each generated sequence. For
decoding, we find that using DTS⋆ with max-backup (λ → ∞) yields the best performance. We
compare our method against two baselines: FK/SMC [62] and best-of-N .

Results. As shown in Figure 10, DTS⋆ consistently achieves the highest rewards as the number of
function evaluations (NFEs) increases. Notably, reward functions in text domains are particularly
susceptible to over-optimization, leading to the less diverse outputs observed when using FK/SMC.
By contrast, DTS⋆ produces outputs that have both high rewards and high diversity.

6 Discussion

We have introduced a novel framework that casts inference–time alignment of diffusion models as a
finite-horizon tree search. By propagating terminal rewards via a soft value backup, our approach
achieves global credit assignment and improved sample quality as compute increases. Below, we
highlight practical considerations, point out limitations, and suggest directions for further work.

High-dimensions and the role of pretrained model. In high dimensions, an uninformed search
tree grows exponentially with dimension, rendering pure tree search infeasible. A good quality
pretrained model acts as a powerful prior, significantly pruning the effective search space.

Learning the value function. In several applications of MCTS in game play, such as AlphaZero
[61], deep neural networks approximate both policy and value, speeding up search via learned rollouts
and leaf estimates. While our current work focuses on zero-shot inference-time alignment for any
unseen reward, an exciting future direction would be to integrate a learned value network for a fixed
reward. This direction can address another important limitation – when the number of samples is
significantly larger than the tree, we see repeated samples corresponding to high probability leaves.

Compute cost. The control flow of tree-based methods is sequential, which makes them less
parallelizable than particle-based methods such as SMC. However, as discussed in Section 4.3,
we implement an efficient version by batching calls to the diffusion model whenever possible,
achieving per-step parallelism. On the extreme end, AlphaZero [61] scaled MCTS across thousands
of GPUs using multiple asynchronous ‘actors’ to perform rollouts that update shared parameters;
DTS can benefit from a similar design. Moreover, once the tree is constructed, sampling is purely
pointer-chasing and incurs no further model calls, making repeated draws effectively free.
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A Extended related work

We discussed the main approaches that have been proposed for inference-time alignment of diffusion
models in Section 3. Below, we briefly review three tangentially related areas: fine-tuning of diffusion
models, their use in reinforcement learning, and entropy-regularized variations of Monte Carlo Tree
Search.

Fine-tuning of diffusion models. To sample from the target distribution π∗ for a fixed, known
reward function, one option is to amortize the posterior sampling problem and update the model
parameters via fine-tuning. The paradigm mirrors the trajectory of large–language-model alignment
[83; 53]. Supervised preference finetuning trains directly on synthetic pairs scored by a reward
model [39; 75]. Some early methods exploit differentiable objectives to back-propagate a single
scalar all the way to the noise prediction network [11; 50], whereas more traditional reinforcement
learning approaches cast each reverse step as an action and optimize expected reward [5]. To avoid
over-optimization of the reward, recent works use KL regularization [19; 68; 71].

Diffusion models in reinforcement learning. Since the introduction of diffusion models as power-
ful frameworks for generative modeling, they have become popular for sampling actions or future
states in RL. The earliest successes were in offline imitation learning, where some approaches model
trajectories [31; 1] or expert policies [9] from offline datasets. Other works maximize a Q-function in
addition to behavior cloning [72; 33], employ an explicit actor–critic scheme [22], or treat the critic
as an energy function to guide the denoiser [43]. Some goal-conditioned extensions have also been
proposed [54; 29]. Recent works have explored similar ideas in the online setting [79; 51; 30]. Those
methods aim to maximize return for control tasks, while we aim to draw unbiased samples from the
reward-tilted distribution for any chosen reward.

Entropy-regularized MCTS. Monte-Carlo Tree-Search (MCTS) has recently been extended to
soft-value objectives that incorporate an entropy bonus [76], which uses a log-sum-exp value update
and samples actions from a Boltzmann distribution, guaranteeing improved exploration at the cost
of converging to the soft rather than the standard optimum. Follow-up work proposed to adapt the
entropy term to a predefined value [37] and decay the entropy term [49]. Very recently, Morozov et al.
[47] used soft-backup MCTS to improve planning in Generative Flow Networks [4]. Our Diffusion
Tree Sampling (DTS) follows the same Boltzmann selection and soft value backup pattern, it is the
first to embed a pre-trained diffusion kernel inside the tree and to prove consistency for sampling
from the KL-regularised posterior, not just selecting a single high-reward action. In this sense,
DTS bridges the gap between entropy-regularized MCTS used for control and unbiased posterior
sampling required for inference-time alignment of generative models.

B Sequential Monte Carlo for diffusion sampling

Many existing methods for inference-time diffusion alignment [74; 67; 7; 17; 34] apply sequential
Monte Carlo (SMC) [13] to the reverse diffusion chain. SMC maintains a population of K particles
to approximately sample from a sequence of intermediate targets {πt(xt:T )}0t=T , culminating in the
desired π∗(x0) ∝ pθ(x0) exp(λr(x0)). In diffusion alignment, one usually sets

πt(xt:T ) ∝ p(xT )

T∏
s=t+1

pθ(xs−1 | xs) exp (λ v̂t(xt)) , (10)

where v̂t is a potential approximating the soft value Vt. Each SMC iteration for t = T, T − 1, . . . , 0
has three steps:

1. Propagation. Sample particles x̃(k)
t−1 ∼ qt( · | x(k)

t ), for k = 1, . . . ,K where qt is the proposal
distribution, often set to be the diffusion transition pθ(· | xt).

2. Weighting. Assign importance weights

w
(k)
t−1 =

pθ(x̃
(k)
t−1 | x

(k)
t )

qt(x̃
(k)
t−1 | x

(k)
t )︸ ︷︷ ︸

importance ratio

× exp
(
λ v̂t−1(x̃

(k)
t−1)

)
. (11)

The first factor corrects for using a proposal and the second tilts weights toward high estimated
value.
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3. Resampling. Resample {x̃(k)
t−1}Kk=1 proportional to {w(k)

t−1}Kk=1 to obtain an equally weighted
particle set {x(k)

t−1}Kk=1 for the next iteration.

Classical SMC guarantees that, as K→∞ and if the potentials are exact, the empirical measure∑
k w

(k)
0 δ

(
x
(k)
0

)
converges to the target distribution π∗, where δ(x) is the Dirac delta at x. In

practice, however, this repeated sampling procedure can reduce the diversity of samples, especially
when the weights have high variance. This results in an effective sample size which is much lower
than K.

Another major issue when applying SMC to diffusion models is that estimating the soft value function
Vt is not straightforward and errors in the approximation can lead to inaccurate sampling. The next
subsection discusses the value-estimation problems in more detail.

C Connection with Generative Flow Networks

Diffusion Tree Sampling can be viewed as an on-the-fly, non-parametric realization of the ideas
behind Generative Flow Network (GFlowNet) [4]. Both frameworks ultimately seek to sample from
an unnormalised density:

π∗(x) =
1

Z
f(x), Z =

∫
f(x) dx,

but they do so with different machinery and at different points in the learning–inference pipeline.

GFlowNets define a probability over complete paths τ = (s0→· · ·→sT = x) through

Pθ(τ) =

T∏
t=1

Pθ(st | st−1),

and train the parameters θ so that the forward flow leaving every non-terminal state equals the
backward flow entering it plus injected terminal reward r(x) = log f(x). For the special case of a
tree-structured graph, this constraint in log form is a soft Bellman equation [66; 14; 46]:

F (s) =
1

λ
log

∑
s′∈Child(s)

Pθ(s
′ | s) exp (λF (s′)) ,

with F (s) the learned log-flow function.

DTS satisfies the same soft Bellman recursion (cf. Equation (5)), but does so without learning
parameters. During tree construction, DTS estimates the soft value Vt by Monte-Carlo log-sum-exp
backups; selection then samples children proportionally to exp(λv̂t−1), where v̂t−1 is the estimated
soft value. Repeated roll-outs make the empirical terminal distribution converge to the reward-tilted
posterior π∗(x0) ∝ pθ(x0) exp (λr(x0)), just as a perfectly trained GFlowNet would.

The key differences between DTS and GFlowNets are summarized below.

• Proposal. DTS uses a fixed, pretrained diffusion kernel pθ as a proposal, whereas GFlowNets
learn their forward policy Pθ.

• Learning vs. search. DTS performs pure inference without updating any parameters, whereas
GFlowNets learn the parameters of the sampler to amortize future sampling.

• Computational regime. DTS excels when one has a strong prior and large inference budget
for new rewards; GFlowNets shine when the reward is fixed and repeated queries amortize the
training cost.

Because DTS is a search procedure, it is ideal for adapting a pretrained diffusion model to different
unseen reward functions without retraining. GFlowNets, in contrast, learn a fast parametric sampler
for a single reward.

D Proofs and derivations

D.1 Derivation of Equations 5 and 6

We derive the recursive relation satisfied by the soft value function as well as the expression for the
optimal policy in Section 2 for completeness.
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Soft value function. This recursive relation is analogous to the soft Bellman equation in maximum
entropy RL [82; 20]. Starting from the definition of Vt(xt):

Vt(xt) =
1

λ
logEpθ(x0:t−1|xt) [exp (λr(x0))]

=
1

λ
log

∫
p(x0,x1, . . . ,xt−1|xt) exp (λr(x0)) dx0dx1 . . . dxt−1

=
1

λ
log

∫
p(x0,x1, . . .xt−2|xt−1) p(xt−1|xt) exp (λr(x0)) dx0dx1 . . . dxt−1

=
1

λ
log

∫
p(xt−1|xt)

(∫
p(x0,x1, . . .xt−2|xt−1) exp (λr(x0)) dx0dx1 . . . dxt−2

)
︸ ︷︷ ︸

=exp(λV (xt−1))

dxt−1

=
1

λ
log

∫
p(xt−1|xt) exp (λV (xt−1)) dxt−1 =

1

λ
logEp(xt−1|xt) [exp (λV (xt−1))] .

The above relation combined with the terminal condition V0(x0) = r(x0) gives Equation (5).

Optimal policy. The joint target density over the full chain (x0, . . . ,xt−1,xt) is given by:

π∗(x0, . . . ,xt−1,xt) =
1

Z
pθ(x0, . . . ,xt−1,xt) exp (λr(x0)) ,

where Z represent the normalization constant of this joint density.

The marginal joint density of (xt,xt−1) under π∗ is:

π∗(xt,xt−1) =
1

Z

∫
pθ(x0, . . . ,xt−1,xt) exp (λr(x0)) dx0 . . . dxt−2

=
1

Z
pθ(xt)pθ(xt−1 | xt)

(∫
pθ(x0, . . . ,xt−2 | xt−1) exp (λr(x0)) dx0 . . . dxt−2

)
=

1

Z
pθ(xt)pθ(xt−1 | xt) exp (λV (xt−1))

Similarly, the marginal density of xt under π∗ is:

π∗(xt) =
1

Z
pθ(xt) exp (λV (xt))

By dividing these two marginals, we get the transitions under the optimal policy:

π∗(xt−1 | xt) =
π∗(xt,xt−1)

π∗(xt)
=

pθ(xt−1 | xt) exp (λV (xt−1))

exp (λV (xt))

=
pθ(xt−1 | xt) exp (λVt−1(xt−1))∫

pθ(xt−1 | xt) exp (λVt−1(xt−1)) dxt−1
.

The above relation gives the optimal policy from Equation (6).

D.2 Proof of Proposition 1

Proposition 1 (Asymptotic consistency). Let r be bounded and λ > 0, then DTS produces a
sequence of terminal states whose empirical distribution converges to the optimal policy π∗ as the
number of tree iterations M →∞.

Proof. We use p(· | xt) to denote a general proposal distribution. For application to diffusion
alignment, this would correspond to transitions under the pretrained model pθ(· | xt). Additionally,
we use q̂(· | xt) to denote the transition density of DTS .

Step 1: Transition probability under DTS . Recall that under DTS , given a node xt, we create
each child by sampling from the base model p(· | xt). During tree traversal, we select the next
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state xt−1 proportional to the exponentiated soft value function. Thus, the transition probability of
DTS from xt to xt−1 is given by:

q̂(xt−1 | xt) =
p(xt−1 | xt) exp (λv̂(xt−1))∫

p(xt−1 | xt) exp (λv̂(xt−1)) dxt−1
=

p(xt−1 | xt) exp (λv̂(xt−1))

exp (λv̂(xt))
, (12)

where the second equality follows from the definition of the soft Bellman equation:

v̂(xt) =
1

λ
logExt−1∼p(·|xt) [exp (λv̂(xt−1))] .

Step 2: Joint density of trajectory. Recall that the root node of DTS contains a dummy state xT+1

that transitions to the diffusion process prior q̂(xT | xT+1) = N (0, I). Then, the joint density of a
full trajectory {xT ,xT−1, . . . ,x0} under DTS is given by:

q̂(xT ,xT−1, . . . ,x0) =

T+1∏
t=1

q̂(xt−1 | xt) =

T+1∏
t=1

p(xt−1 | xt) exp (λv̂(xt−1))

exp (λv̂(xt))

=
exp (λv̂(x0))

exp (λv̂(xT+1))

T+1∏
t=1

p(xt−1 | xt)

=
exp (λv̂(x0))

exp (λv̂(xT+1))
p(xT ,xT−1, . . . ,x0).

Step 3: Marginalizing. Marginalizing over intermediate states x1, . . . ,xT , we get the distribution
of terminal state x0:

q̂(x0) =

∫
q̂(xT ,xT−1, . . . ,x0) dxT dxT−1 . . . dx1

=
exp (λv̂(x0))

exp (λv̂(xT+1))

∫
p(xT ,xT−1, . . . ,x0) dxT dxT−1 . . . dx1

=
exp (λv̂(x0))

exp (λv̂(xT+1))
p(x0).

By definition, the soft value function at the terminal node is v̂(x0) = r(x0). Plugging this and using
the definition of value function from Equation (4), we have:

q̂(x0) =
exp (λr(x0)) p(x0)∫

p(xT ,xT−1, . . . ,x0 | xT+1) exp (λr(x0)) dxT dxT−1 . . . dx1dx0

=
exp (λr(x0)) p(x0)∫

p(x0) exp (λr(x0)) dx0
.

This has the form of the target distribution in Equation (6), except that it uses the value estimates
v̂ that are calculated based on rollouts starting from each state xt. In the limit of infinite rollouts,
these value estimates approach the true soft values, confirming that the sampling distribution q̂ from
DTS exactly matches the target distribution π∗.

Therefore, DTS is consistent, as it correctly generates samples from the desired target distribution
asymptotically.
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E DTS and DTS⋆ algorithm

Algorithm 1 Diffusion Tree Sampling (DTS) and Diffusion Tree Search (DTS⋆)

1: Input: base policy pθ, reward function r, number of iterations M , inverse temperature λ,
parameters C,α, cuct

2: Initialize root node xT+1 with dummy value, v̂(xT+1) = 0, N(xT+1) = 1
3: Initialize tree T with root node xT+1

4: for m = 1, . . . ,M do
5: P ← {xT+1}
6: Set t← T + 1
7: // Selection
8: while |C(xt)| ≥ C ·N(xt)

α and t > 0 do
9: [DTS] select child probabilistically: xt−1 ∼ exp(λv̂(xt−1))∑

x′∈C(xt)
exp(λv̂(x′))

10: [DTS⋆] select child maximizing UCT: xt−1 = argmaxx′∈C(xt) v̂(x
′) + cuct

√
logN(xt)
N(x′)

11: P ← P ∪ {xt−1}
12: t← t− 1
13: end while
14: // Expansion: expand xt by sampling a new child
15: if t > 0, and |C(xt)| < C ·N(xt)

α then
16: // Rollout: from new node xt−1 sample rollout path to terminal x0

17: while t > 0 do
18: xt−1 ∼ pθ(· | xt), v̂(xt−1) = 0, N(xt−1) = 1
19: P ← P ∪ {xt−1}
20: t← t− 1
21: end while
22: end if
23: Evaluate terminal reward: v̂(x0) = r(x0)
24: // Backup: update value along path P
25: for t = 0, . . . , T do
26: Soft backup: v̂(xt+1)← 1

λ log
∑

xt∈C(xt+1)
exp(λv̂(xt))

27: Update visits: N(xt+1)← N(xt+1) + 1
28: end for
29: end for
30: return T

F Implementation details for DTS and DTS⋆

F.1 Tree structure

The algorithm presented in Section 4.2 and Appendix E allows every state xt along the denoising
trajectory to be considered for branching. However, in practice, we only branch every few timesteps.
We noticed very little difference in performance between the two cases for the same number of
function evaluations, however, we expect branching at every step to outperform for a very high
compute budget. We match the tree branching schedule with the resampling schedule for all baselines
with SMC, similar to the setting from Singhal et al. [62]. The exact setting for each experiment is
presented in Table 2, where we always branch at the root node corresponding to t = T .

Table 2: Branching schedule for DTS and DTS⋆ , which is also the resampling schedule used for
SMC-based methods – SMC/FK [62], TDS [74], DAS [34].

Domain Total denoising steps Branching schedule

Two-dimensional 100 100(root), 80, 60, 40, 20
Image pixels (MNIST, CIFAR-10) 50 50(root), 40, 30, 20, 10
Image latents (SD-v1.5) 50 50(root), 40, 30, 20, 10
Text tokens (MDLM) 64 64(root), 54, 44, 34, 24, 14
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Apart from this, we have hyperparameters associated with progressive widening that control the
maximum number of branches at any node. We used α = 0.8 and C = 2 for all two-dimensional and
image experiments and α = 0.7 and C = 2 for text generation. There is a scope of improving the
performance of DTS and DTS⋆ further by tuning these parameters for specific tasks.

F.2 Experiment details

Illustrative 2D

Base diffusion model: The denoising network is an MLP that takes as input the 2-dimensional
data xt and the timestep t and outputs a 2-dimensional noise prediction. The timestep is
transformed using sinusoidal embeddings [70]. The network has four hidden layers of 128
dimension each with the sigmoid linear unit (SiLU, [25]) activation. We used the linear noise
schedule with βmin = 0.001 and βmax = 0.07 and the score matching objective. The optimizer
used for training was Adam [35] with a learning rate of 3× 10−3. We train the model for 500
epochs on a training set of 10000 samples.

Reward function: Gaussian mixture: The reward function is:

r(x) = log

(
8∑

i=1

wi exp
(
−∥x− µi∥2/2σ2

))
,

where wi = exp(1.5 i), µi = 4
(
cos 2π(i−1)

8 , sin 2π(i−1)
8

)
, i = 1, . . . , 8, with σ = 0.3.

Checkerboard: The reward is negative distance from the center r(x) = −0.5∥x∥2.

Class-conditional MNIST

Base diffusion model: The denoising network is a Unet architecture [57] that operates on images
of size 32 × 32 × 1 (upscaled from 28 × 28 × 1) with block channels {32, 64, 128, 256}. We
use the DDIMSchedulera from diffusers library with default parameters, except we set η = 1.0
so the inference process is stochastic like DDPMs [27]. We use the AdamW optimizer with a
learning rate of 10−4 for 100 epochs on the MNIST training set.

Reward function: We train a classifier p(c | x) on the MNIST training set. The classifier is a
convolutional neural network [38] using two 5× 5 kernels with (16, 32) channels followed by
2× 2 max pooling operation with ReLU activations. The features are then flattened and followed
by a linear layer with 10 outputs corresponding to the classes. The network was trained using
Adam optimizer with learning rate 10−3. The reward function for single class generation is the
log likelihood of the class ri(x) = log p(c = i | x) for i ∈ {0, 1, . . . , 9}. For the even or odd
generation, it is defined as r(x) = maxi∈S log p(c = i | x), where S = {0, 2, 4, 6, 8} for even
digit generation and S = {1, 3, 5, 7, 9} for odd digit generation.

ahttps://huggingface.co/docs/diffusers/en/api/schedulers/ddim

Class-conditional CIFAR-10

Base diffusion model: We used the pre-trained diffusion model ddpm-cifar10-32a from
Hugging Face, which uses a Unet architecture and diffuses over 32 × 32 × 3 images in pixel-
space. We use the DDIMScheduler with η = 1.0 for stochastic denoising.

Reward function: We train a classifier p(c | x) on the CIFAR-10 training set. The classifier
uses a ResNet-18 [23] backbone that outputs an embedding which is average pooled, flattened,
and passed to a single linear layer with 10 outputs. The network is trained using Adam optimizer
with learning rate 10−3. Similar to MNIST single class generation, the reward function is the log
likelihood of the class ri(x) = log p(c = i | x) for i ∈ {0, 1, . . . , 9}.

ahttps://huggingface.co/google/ddpm-cifar10-32
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Text-to-image

Base diffusion model: We use Stable Diffusion v1.5a from Hugging Face, which is a latent
diffusion model [56]. The diffusion process is defined over 64× 64× 4 latent variables, which
are obtained by encoding 512 × 512 × 3 images using a variational autoencoder. The model
uses CLIP [52] to encode text prompts into embeddings which are then used to condition the
generative process via classifier-free guidance [26]. We use the DDIMScheduler with η = 1.0.

Reward function: We use pre-trained models as reward functions including ImageRewardb

r(x,y) that encodes prompt accuracy as well as human preferences the LAION aesthetic score
predictorc r(x) that encodes aesthetic quality of an image.

ahttps://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
bhttps://github.com/THUDM/ImageReward
chttps://github.com/LAION-AI/aesthetic-predictor

Conditional text

Base diffusion model: We use MDLMa for our text generation experiments. This is a discrete
diffusion model with 110M parameters that directly predicts the tokens. We define the diffusion
process over a context length of 64 tokens with 64 sampling steps and use the standard discrete
unmasking update for stochastic denoising.

Reward function: We use a BERT-based classifierb trained on the Corpus of Linguistic Accepat-
bility (CoLA) [73]. This reward function r(x) encodes the linguistic acceptability of a given
string x. The reward is the log probability of the text being "acceptable". We find this model to
be more robust to reward-hacking than alternatives.

ahttps://huggingface.co/kuleshov-group/mdlm-owt
bhttps://huggingface.co/textattack/roberta-base-CoLA

F.3 Compute

We report execution times on a single A100 GPU with 80 gigabytes of memory.

• Each 2D experiment including all methods runs in 15 minutes. Adding up the time over five
seeds and two different datasets, the combined run time is approximately 2.5 GPU hours.

• The MNIST and CIFAR-10 class-conditional experiments use approximately 3 GPU hours per
class including all methods. Over all 22 tasks (10 MNIST single digit + 2 MNIST even/odd + 10
CIFAR-10 classes) equals approximately 66 GPU hours.

• The text-to-image experiments using Stable Diffusion v1.5 require roughly 30 minutes per
prompt across all methods. Adding up all 200 prompts from DrawBench and 45 animal prompts,
reproducing all experiments requires approximately 123 GPU hours.

• The text generation experiments using MDLM requires roughly 30 minutes per prompt. Thus,
generating 3 completions per prompt for the 15 prompts requires roughly 22.5 GPU hours.

G Details of baselines

We re-implemented all baseline methods in our unified codebase since most of them use SMC as
a backbone and share the same underlying infrastructure. Each implementation was validated by
reproducing the quantitative results reported in its original paper. Appendix B provides a concise
primer on SMC for reference. The complete source code including all baselines will be released
publicly upon publication of this work.

DPS. Diffusion Posterior Sampling [10] was originally proposed for noisy inverse problems such
as image super-resolution and de-blurring using the gradient of the final objective. To adapt this
method for general reward functions, we make a minor modification by replacing the gradient of the
inverse problem objective with the gradient of the reward function:

x̃t−1 ∼ N
(
µθ(xt, t) + λσ2

t ∇xt
r(x̂0(xt)), σ

2
t I
)
, (13)

where x̂0 is obtained using Tweedie’s formula (cf. Section 3), µθ is the predicted mean of the base
diffusion model, and r(x) is the reward function in the two-dimensional experiments and classifier
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log likelihoods log p(c = i | x) for class-conditional image experiments. The official implementation
is provided here.

SMC/FK-Steering. In our paper, SMC refers to the simplest variant, FK-Steering [62], which
defines different weighting schemes and uses the pre-trained diffusion model as the proposal distribu-
tion. As per the setting in Singhal et al. [62], we perform the resampling step at fixed intervals during
denoising (given in Table 2) and use adaptive resampling to increase diversity of generated samples.
Our sampling experiments (two-dimensional and class-conditional image generation) use the ‘diff’
potential with λ = 1.0, whereas the search experiments (text-to-image and text generation) use the
‘max’ potential with λ = 10.0. The weights for resampling are given by Equation (11) where the
proposal is equal to the pre-trained diffusion transition and the value estimates are equal to:

v̂diff
t−1(x̃t−1) = r (x̂0(x̃t−1))− r (x̂0(xt)) , v̂diff

T (xT ) = r (x̂0(xT )) .

v̂max
t−1(x̃t−1) = max

{
r(x̂0(x̃t−1)), m

(k)
t

}
, m

(k)
t = max

s≥t
r
(
x̂0(x

(k)
s )
)
.

We adapted the official implementation provided here.

TDS. Twisted Diffusion Sampler [74] comprises of a “twisted” proposal which is used along with
SMC to sample from the target posterior distribution. For general reward functions, the twisted
proposal is the same as the one used in Equation (13) and the final weights are obtained using
Equation (11) after plugging in the twisted proposal and the value estimates:

qt(x̃t−1 | xt) = N
(
x̃t−1 ; µθ(xt, t) + λσ2

t ∇xtr(x̂0(xt)), σ
2
t I
)
.

v̂t−1(x̃t−1) = r (x̂0(x̃t−1))− r (x̂0(xt)) , v̂T (xT ) = r (x̂0(xT )) .

The official implementation is provided here.

DAS. Diffusion Alignment as Sampling [34] re-uses the twisted proposal of TDS but multiplies the
reward term by a monotone tempering schedule 0 = γT ≤γT−1≤ . . .≤γ0 = 1 to reduce the bias
from inaccurate value estimates at high noise levels. The weights are given by Equation (11) after
plugging in the tempered proposal and value estimates:

qt(x̃t−1 | xt) = N
(
x̃t−1 ; µθ(xt, t) + λ γt−1 σ

2
t ∇xt

r(x̂0(xt)), σ
2
t I
)
.

v̂t−1(x̃t−1) = γt−1 r (x̂0(x̃t−1))− γt r (x̂0(xt)) , v̂T (xT ) = γT r (x̂0(xT )) .

The official implementation is provided here.

H Additional experimental results

H.1 Class-conditional image experiments

We supplement Table 1 and Figure 8 with additional results and samples.

We plot all four metrics – FID, CMMD, average log rewards and average diversity – across different
number of function evaluations (NFEs) for the three settings considered in Section 5.1. The plots
show that across the three settings for most values of NFEs, DTS matches the target distribution more
accurately compared to other methods (lowest FID and CMMD).

We also present random samples for each method and setting in Figures 12 to 13. We observe the
same trend as noticed in Figure 8 – gradient-based guidance like DPS can be unstable leading to
unnatural images, while SMC-based methods show signs of mode collapse with low average diversity
and high average rewards. DTS balances both diversity and high rewards effectively by closely
matching the true posterior distribution.
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Figure 11: Various distribution level metrics versus number of function evaluations for different
methods on MNIST single digit generation averaged over all 10 digits (left), MNIST odd and even
digit generation (center), and CIFAR-10 single class generation averaged over all 10 digits (right).
All methods were evaluated with 5000 generated samples per class. Metrics reported: FID (lower is
better), CMMD (lower is better), Average log rewards (higher is better), and average diversity (higher
is better).
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Figure 12: MNIST posterior samples generated using different methods for digits 0-9, even and odd.
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Figure 13: CIFAR-10 posterior samples generated using different methods for all classes.
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H.2 Text-to-image examples

We present more samples for qualitative analysis. Figure 14 shows how samples change with
increasing amount of inference-time compute, providing visual evidence for the quantitative results
from Figure 9. Figures 15 to 17 shows text-image pairs testing different concepts such as artistic
style, spatial arrangement and object count.

Figure 14: Text-image pairs from Figure 1 with increasing amount of inference-time compute,
measured in number of function evaluations (NFEs) of the diffusion model.

28



Figure 15: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding
function for prompts requiring a specific artistic style. Samples are picked at random for each method
and prompt.

Figure 16: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding
function for prompts requiring specific spatial relationships between objects. Samples are picked at
random for each method and prompt.
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Figure 17: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding
function for prompts requiring specific object counts. Samples are picked at random for each method
and prompt.

H.3 Text completion examples

We present additional text completions for the base MDLM model, FK-Steering and DTS⋆ in
Figure 18.

Figure 18: Sample text completions using MDLM and a CoLA classifier as reward. Samples are
picked at random for each method and prompt.
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